Dinamika Rotasi Benda Tegar Momen Inersia

6:39 AM
gerak suatu benda berdasarkan lintasannya dibedakan menjadi tiga, yaitu gerak lurus, gerak parabola, dan gerak melingkar. Pada gerak melingkar atau gerak rotasi, benda bergerak berputar pada porosnya. Perhatikan gambar di atas. Korsel gantung dikatakan melakukan gerak rotasi karena lintasannya berbentuk lingkaran dan ada sumbu sebagai pusatnya. Bagaimana dengan dinamika gerak rotasi tersebut?

Gerak rotasi (melingkar) adalah gerakan pada bidang datar yang lintasannya berupa lingkaran. kita akan mempelajari bagaimana suatu benda dapat berotasi dan apa yang menyebabkan. Oleh karena itu, kita akan mengawali dengan pembahasan tentang pengertian momen gaya, momen inersia, dan momentum sudut pada gerak rotasi. Gerak Rotasi Benda Tegar adalah Gerak benda yang berputar terhadap suatu sumbu putar (poros) atau sumbu rotasi disebut gerak rotasi. Contoh gerak rotasi diantaranya: gerakan putaran bumi terhadap sumbunya, roda sepeda yang berputar, gerakan pintu yang berputar pada engselnya, dan masih banyak lagi. Perhatikan animasi berikut ini!

Gerak rotasi benda dapat diamati dalam berbagai peristiwa di lingkungan kalian. Bola yang menggelinding, gerak engsel pada pintu, gerakan katrol, sekrup, dan roda merupakan contoh gerak rotasi benda. Sebagian besar gerak rotasi yang dialami benda tidak terjadi dengan sendirinya, tetapi ada sesuatu yang menyebabkan benda tersebut berotasi. Pada bab ini kalian akan mempelajari bagaimana sebuah benda dapat berotasi dan apa yang menyebabkannya. Beberapa besaran yang berkaitan dengan dinamika rotasi adalah momen gaya, momen inersia, dan momentum sudut.

Momen Gaya (Torsi) Pada Gerak Rotasi

Penyebab gerak suatu benda adalah gaya. Pada gerak rotasi, sesuatu yang menyebabkan benda untuk berotasi atau berputar disebut momen gaya atau torsi. Konsep torsi dapat dilihat pada saat kita membuka pintu. Cobalah membuka pintu dari bagian yang dekat dengan engsel. Bagaimanakah gaya yang kalian keluarkan? Sekarang, cobalah kembali membuka pintu dari bagian paling jauh dari engsel. Bandingkan gaya yang diperlukan antara dua perlakuan tersebut. Tentu saja membuka pintu dengan cara mendorong bagian yang jauh dari engsel lebih mudah dibandingkan dengan mendorong bagian yang dekat dari engsel.


Momen gaya didefinisikan sebagai hasil kali antara gaya dengan jarak titik ke garis kerja gaya pada arah tegak lurus. Benda dapat melakukan gerak rotasi karena adanya momen gaya. Momen gaya timbul akibat gaya yang bekerja pada benda tidak tepat pada pusat massa.

maka besarnya momen gaya adalah:
τ = F.d = F.r sinθ
dengan:
τ = momen gaya (Nm)

F = gaya yang bekerja (N)
r = jarak atau lengan (m)
momen gaya pada benda

Momen gaya merupakan besaran vektor, sehingga
persamaan dapat dinyatakan dalam bentuk:
τ = r × F
Momen gaya yang bekerja pada benda menyebabkan benda berotasi.
Gambar diatas memperlihatkan sebuah gaya F bekerja pada sebuah benda yang berpusat massa di O. Garis/kerja gaya berjarak d, secara tegak lurus dari pusat massa, sehingga benda akan berotasi ke kanan searah jarum jam. Jarak tegak lurus antara garis kerja gaya dengan titik pusat massa disebut lengan gaya atau lengan momen. Momen gaya didefinisikan sebagai hasil kali antara gaya (F) dengan jarak lengan gaya (d).
Arah momen gaya dinyatakan oleh aturan tangan kanan. Bukalah telapak tangan kanan kita dengan ibu jari terpisah dari keempat jari yang lain. Lengan gaya d sesuai dengan arah ibu jari, gaya F sesuai dengan arah keempat jari, dan arah torsi sesuai dengan arah membukanya telapak tangan.
arah gerak rotasi
Penentuan arah momen gaya dengan kaidah tangan kanan
Momen gaya τ menyebabkan benda berotasi. Jika benda berotasi searah jarum jam, maka torsi yang bekerja pada benda bertanda positif. Sebaliknya, jika benda berotasi dengan arah berlawanan dengan arah jarum jam, maka torsi penyebabnya bertanda negatif. Torsi-torsi yang sebidang dapat dijumlahkan.
Apabila pada sebuah benda bekerja beberapa gaya, maka jumlah momennya sama dengan momen gaya dari resultan semua gaya yang bekerja pada benda tersebut. Secara matematis dapat dituliskan seperti di bawah ini.
 τO1 + τO2 +τO3 + ….

 Rd atau ΣτO =

 Rd

Momen Inersia Pada Gerak Rotasi

Momen inersia (kelembaman) suatu benda adalah ukuran kelembaman suatu benda untuk berputar terhadap porosnya. Nilai momen inersia suatu benda bergantung kepada bentuk benda dan letak sumbu putar benda tersebut.
Moment Inersia Gerak Rotasi
Misalkan kita memiliki sebuah batang ringan (massa diabaikan) dengan panjang R. Salah satu ujung batang, yaitu titik P, ditetapkan sebagai poros rotasi. Pada ujung batang yang lain dihubungkan dengan sebuah partikel bermassa m. Jika sistem diputar terhadap poros P , sehingga partikel berotasi dengan kecepatan v, maka energi kinetik rotasi partikel dapat ditulis sebagai berikut.
Momen inersia dilambangkan dengan I, satuannya dalam SI adalah kgm2. Nilai momen inersia sebuah partikel yang berotasi dapat ditentukan dari hasil kali massa partikel dengan kuadrat jarak partikel tersebut dari titik pusat rotasi. Faktor m × R2 merupakan momen inersia titik terhadap sumbu putarnya. Secara matematis dapat ditulis sebagai berikut.
I = m · R2
Keterangan:
I : momen inersia (kgm2)
R : jari-jari (m)
m : massa partikel atau titik (kg)
Benda yang terdiri atas susunan partikel (titik), jika melakukan gerak rotasi memiliki momen inersia sama dengan hasil jumlah dari momen inersia partikel penyusunnya.
I

= Σ

mi x Ri2 = (m1 × R21) + (m2 × R22) + (m3 × R23) + …

Pada gambar berikut, dilukiskan momen inersia pada gerak rotasi berbagai benda tegar homogen.


 momen inersia benda homogen
Momen inersia pada gerak rotasi berbagai benda tegar homogen

Momentum Sudut Pada Gerak Rotasi

Pernahkah kita melihat orang bermain gasing? Mengapa gasing yang sedang berputar meskipun dalam keadaan miring tidak roboh? Pasti ada sesuatu yang menyebabkan gasing tidak roboh. Setiap benda yang berputar mempunyai kecepatan sudut. Bagaimana hubungan antara momen inersia dan kecepatan sudut?
Titik A yang berotasi dengan sumbu O dan jari-jari R memiliki momentum m × v.
Gambar di atas memperlihatkan titik A yang berotasi dengan sumbu putar O. R adalah jarak antara O dan A. Selama berotasi titik A memiliki momentum sebesar P = m × v.Hasil perkalian momentum dengan jarak R disebut momentum sudut, dan diberi notasi L.
L = P × R
L = m × v × R
L = m ×  ω  × R × R
L = m × R2 ×  ω  
Apabila momentum sudut dihubungkan dengan momen inersia, maka diperoleh persamaan sebagai berikut.
L = I × ω 
Keterangan:
v : kecepatan linear (m/s)
L : momentum sudut (kg m2s–1)
m : massa partikel/tittik (kg)
R : jarak partikel ke sumbu putar (m)
ω : kecapatan sudut (rad/s)
I : momen inersia (kg m2)

Hubungan Antara Momen Gaya dan Percepatan Sudut

Gambar diatas menunjukkan sebuah partikel dengan massa m berotasi membentuk lingkaran dengan jari-jari r akibat pengaruh gaya tangensial F. Berdasarkan Hukum II Newton, maka:

Momen Kopel Pada Gerak Rotasi

Kopel adalah pasangan dua gaya sama besar dan berlawanan arah yang garis-garis kerjanya sejajar tetapi tidak berimpit.
Besarnya kopel dinyatakan dengan momen kopel (M), yaitu hasil perkalian salah satu gaya dengan jarak tegak lurus antara kedua gaya tersebut. Secra matematis dapat ditulis sebagai berikut.
M = F × d
Keterangan:
M : momen kopel (Nm)
F : gaya (N)
d : jarak antargaya (m)
Pengaruh kopel pada suatu benda memungkinkan benda tersebut berotasi. Jika kopel berotasi searah jarum jam diberi nilai negatif (–), dan jika berlawanan dengan arah jarum jam diberi nilai positif (+).
Contoh kopel adalah gaya gaya yang bekerja pada jarum kompas di dalam medan magnetik bumi. Pada kutub utara dan kutub selatan jarum, bekerja gaya yang sama besar, tetapi arahnya berlawanan.


Latest
Previous
Next Post »
0 Komentar